Rabu, 22 Agustus 2007

Medan Listrik

Asal medan listrik
Rumus matematika untuk medan listrik dapat diturunkan melalui Hukum Coulomb, yaitu gaya antara dua titik muatan:

Menurut persamaan ini, gaya pada salah satu titik muatan berbanding lurus dengan besar muatannya. Medan listrik didefinisikan sebagai suatu konstan perbandingan antara muatan dan gaya[1]:

Maka, medan listrik bergantung pada posisi. Suatu medan, merupakan sebuah vektor yang bergantung pada vektor lainnya. Medan listrik dapat dianggap sebagai gradien dari potensial listrik.
Jika beberapa muatan yang disebarkan menghasiklan potensial listrik, gradien potensial listrik dapat ditentukan.


Konstanta k
Dalam rumus listrik sering ditemui konstanta k sebagai ganti dari (dalam tulisan ini tetap digunakan yang terakhir), di mana konstanta tersebut bernilai [2]:

N m2 C-2
yang kerap disebut konstanta kesetaraan gaya listrik [3].

Menghitung medan listrik

Untuk menghitung medan listrik di suatu titik akibat adanya sebuah titik muatan yang terletak di digunakan rumus [4]

Penyederhanaan yang kurang tepat
Umumnya untuk melakukan penyederhanaan dipilih pusat koordinat berhimpit dengan titik muatan yang terletak di sehingga diperoleh rumus seperti telah dituliskan pada permulaan artikel ini, atau bila dituliskan kembali dalam notasi vektornya:


dengan vektor satuan

Disarankan untuk menggunakan rumusan yang melibatkan dan karena lebih umum, dan dapat diterapkan untuk kasus lebih dari satu muatan dan juga pada distribusi muatan, baik distribusi diskrit maupun kontinu. Penyederhanaan ini juga kadang membuat pemahaman dalam menghitung medan listrik menjadi agak sedikit kabur. Selain itu pula karena penyederhanaan ini hanya merupakan salah satu kasus khusus dalam perhitungan medan listrik (kasus oleh satu titik muatan di mana titik muatan diletakkan di pusat koordinat).


Tanda muatan listrik

Muatan listrik dapat bernilai negatif, nol (tidak terdapat muatan atau jumlah satuan muatan positif dan negatif sama) dan negatif. Nilai muatan ini akan mempengaruhi perhitungan medan listrik dalam hal tandanya, yaitu positif atau negatif (atau nol). Apabila pada setiap titik di sekitar sebuah (atau beberapa) muatan dihitung medan listriknya dan digambarkan vektor-vektornya, akan terlihat garis-garis yang saling berhubungan, yang disebut sebagai garis-garis medan listrik. Tanda muatan menentukan apakah garis-garis medan listrik yang disebabkannya berasal darinya atau menuju darinya. Telah ditentukan (berdasarkan gaya yang dialami oleh muatan uji positif), bahwa

muatan positif (+) akan menyebabkan garis-garis medan listrik berarah dari padanya menuju keluar,
muatan negatif (-) akan menyebabkan garis-garis medan listrik berarah menuju masuk padanya.
muatan nol ( ) tidak menyebabkan adanya garis-garis medan listrik.

Gradien potensial listrik
Medan listrik dapat pula dihitung apabila suatu potensial listrik diketahui, melalui perhitungan gradiennya [5]:


dengan


untuk sistem koordinat kartesian.


Energi medan listrik
Medan listrik menyimpan energi. Rapat energi suatu medan listrik diberikan oleh [6]


dengan

adalah permittivitas medium di mana medan listrik terdapat, dalam vakum .
adalah vektor medan listrik.
Total energi yang tersimpan pada medan listrik dalam suatu volum adalah


dengan

adalah elemen diferensial volum.

Distribusi muatan listrik
Medan listrik tidak perlu hanya ditimbulkan oleh satu muatan listrik, melainkan dapat pula ditimbulkan oleh lebih dari satu muatan listrik, bahkan oleh distribusi muatan listrik baik yang diskrit maupun kontinu. Contoh-contoh distribusi muatan listrik misalnya:

kumpulan titik-titik muatan
kawat panjang lurus berhingga dan tak-berhingga
lingkaran kawat
pelat lebar berhingga atau tak-berhingga
cakram tipis dan cincin
bentuk-bentuk lain

Kumpulan titik-titik muatan
Untuk titik-titik muatan yang tersebar dan berjumlah tidak terlalu banyak, medan listrik pada suatu titik (dan bukan pada salah satu titik muatan) dapat dihitung dengan menjumlahkan vektor medan listrik di titik tersebut akibat oleh masing-masing muatan. Dalam kasus ini lebih baik dituliskan


yang dibaca, medan listrik di titik akibat adanya muatan yang terletak di . Dengan demikian medan listrik di titik akibat seluruh muatan yang tersebar dituliskan sebagai


di mana adalah jumlah titik muatan. Sebagai ilustrasi, misalnya ingin ditentukan besarnya medan listrik pada titik yang merupakan perpotongan kedua diagonal suatu bujursangkar bersisi , di mana terdapat oleh empat buat muatan titik yang terletak pada titik sudut-titik sudut bujursangkar tersebut. Untuk kasus ini misalkan bahwa dan dan ambil pusat koordinat di titik untuk memudahkan. Untuk kasus dua dimensi seperti ini, bisa dituliskan pula


yang akan memberikan

sehingga

yang menghasilkan bahwa medan listrik pada titik tersebut adalah nol.

Kawat panjang lurus

Kawat panjang lurus merupakan salah satu bentuk distribusi muatan yang menarik karena bila panjangnya diambil tak-hingga, perhitungan muatan di suatu jarak dari kawat dan terletak di tengah-tengah panjangnya, menjadi amat mudah.

Untuk suatu kawat yang merentang lurus pada sumbu , pada jarak di atasnya, dengan kawat merentang dari sampai dari titik proyeksi pada kawat, medan listrik di titik tersebut dapat dihitung besarnya, yaitu:


Seperti telah disebutkan di atas, apabila dan maka dengan menggunakan dalil L'Hospital diperoleh


Atau bila kawat diletakkan sejajar dengan sumbu-z dan bidang x-y ditembus kawat secara tegak lurus, maka medan listrik di suatu titik berjarak dari kawat, dapat dituliskan medan listriknya adalah

dengan adalah vektor satuan radial dalam koordinat silinder:
di mana adalah sudut yang dibentuk dengan sumbu-x positif.
Catatan
^ Andrew Duffy, Electric field, PY106/Electricfield.html, 7-7-99.
^ Reference Tables for Physical setting/Physics, 2002 Edition, The University of The State of New York, 2002.
^ J.S. Covacs, Coulomb's Law, PhysNet, MISN-0-114, hal 3
^ Tulisan ini menggunakan dua jenis notasi vektor yang berbeda untuk merujuk hal yang sama:
vektor (dengan panah di atasnya), dan
vektor (dicetak tebal).
Lihat: Vector Notation, vec-not-prae, revised 6/02.
^ Carl R. Nave, Electric Field as Gradient, HyperPhysics, electric/efromv.html#c2, 2006.
^ David Land, Electrostatic field energy, ELMAG305/em8a/sld006.htm, 18.10.1999 17:05

3 komentar:

Willie Anggrian, S.Pd mengatakan...
Komentar ini telah dihapus oleh pengarang.
Willie Anggrian, S.Pd mengatakan...
Komentar ini telah dihapus oleh pengarang.
Willie Anggrian, S.Pd mengatakan...

Terimakasih untuk Bapak Drs. Partono, M.Pd atas materi mengenai Medan Listrik, artikel ini sangat berguna bagi saya.